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Understanding the intricacies of factors influencing European Union Emission Trading System (EU
ETS) market prices is paramount for effective policy making and strategy implementation. We pro-
pose the use of the Information Imbalance, a non-parametric measure recently introduced in the
physics community for quantifying the degree to which a set of variables is informative with respect
to another one, to study the relationships among macroeconomic, economic, uncertainty, and energy
variables concerning EU ETS price between January 2014 and April 2023. Our analysis shows that
in Phase 3, commodity-related variables such as the ERIX index are the most informative in explain-
ing the behaviour of the EU ETS market price. Transitioning to Phase 4, financial fluctuations take
centre stage, with the uncertainty in the EUR/CHF exchange rate emerging as a crucial determi-
nant. These results reflect the disruptive impacts of the COVID-19 pandemic and the energy crisis
in reshaping the importance of the different variables. In addition to highlighting the shift in influ-
ential factors between Phase 3 and Phase 4, our findings underscore how macroeconomic volatility
and energy disruptions have altered market dynamics. Notably, during the COVID-19 pandemic, the
volatility in financial markets and fluctuations in energy demand and supply significantly affected the
predictive power of different variables. Moreover, the energy crisis amplified the sensitivity of EU
ETS prices to energy-related factors, reinforcing the importance of incorporating multiple dimen-
sions into market analysis. Beyond variable analysis, we also propose to leverage the Information
Imbalance to address the problem of mixed-frequency forecasting, and we identify the weekly time
scale as the most informative for predicting the EU ETS price. Finally, we show how the Information
Imbalance can be effectively combined with Gaussian Process regression for efficient nowcasting
and forecasting using very small sets of highly informative predictors.

Keywords: EU ETS; Information Imbalance; Gaussian processes; Feature selection; Mixed
frequency data; Forecasting

JEL Classification: Q56, F18, Q58, D40, D80

1. Introduction

The European Union Emission Trading System (EU ETS) is
a key component of the European Union’s effort to combat
climate change and reduce greenhouse gas (GHG) emissions.
The EU ETS sets a gradual limit on GHG emissions in key
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sectors of the economy, mainly the energy sector and industry.
The European Union issues emission permits, which authorise
the discharges of one tonne of carbon dioxide or its equivalent.
Participating companies can buy and sell these allowances on
the ETS market. If a company emits less than its allowances, it
can sell the surplus; conversely, if it exceeds its allowances, it
must buy more or face financial penalties. This market-based
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approach offers flexibility in reducing emissions by provid-
ing a financial incentive for companies that reduce emissions
below their allocated allowances, while punishing those that
exceed these limits. Companies can decide whether to invest
in emission reduction initiatives or buy additional allowances
from the market, depending on which option is more advanta-
geous from an economic and sustainability perspective. The
system is periodically reviewed to reduce emission limits
(also called cap). Bersani et al. (2022) note that the equi-
librium price of certificates is mean-reverting, where the
fundamental mechanism is the excess or shortfall of emis-
sions over the cap set by the regulator, which can be inferred
in practice through the number of certificates distributed.

The EU ETS is considered one of the world’s largest
and most established emissions trading systems. In operation
since 2005, it aims to promote innovation, stimulate invest-
ment in clean technologies and contribute to the EU’s overall
climate goals by reducing greenhouse gas emissions in an eco-
nomically sustainable manner, in accordance with the Kyoto
Protocol and the Paris Agreement.

1.1. Phase 3 and Phase 4

The EU ETS is organised into distinct phases, each defined by
specific rules, objectives, and regulations. These phases serve
as a road map for the progressive establishment and develop-
ment of the system. Currently, the EU ETS has traversed three
primary phases, while a fourth phase is presently underway;
in this work we consider both Phase 3 and Phase 4. In Phase
3 of the EU Emissions Trading Scheme, a deliberate decrease
in the overall cap on emissions was established to encourage
incremental reductions in emissions. Introduced in Phase 3,
the Market Stability Reserve (MSR) was intended to elimi-
nate the effect of excess allowances on the market by reducing
the number of allowances allocated to this reserve in order to
ensure greater market price stability for permits. During Phase
3, the system included both free allocation and auctioning
of allowances. Certain industries, particularly those prone to
high carbon emissions due to the characteristics of the indus-
try itself, received a free allocation of allowances in order to
mitigate the risk of relocation to regions with less stringent
emission regulations. Example sectors include power gener-
ation, heavy industry and aviation. In Phase 4, the EU has
committed to more ambitious emission reduction targets by
2030. The main target is to reduce greenhouse gas emissions
by at least 40% compared to 1990 levels. As of 2022, the start
of Phase 4, the Linear Reduction Factor (LRF) was increased
to 2.2% per year, leading to a faster decrease in the emis-
sions cap than in Phase 3. In addition, there was an increase
in the proportion of allowances provided through auctions,
with the aim of phasing out free allocation in specific sec-
tors. This change mainly affects sectors that benefited during
Phase 3, while maintaining free allocation for strategic but
carbon-dependent industries (European Commission 2023).

1.2. Motivation

In recent times, energy markets have been closely monitored
by governments, investors and society at large. In Europe

in particular, a series of extraordinary events such as the
COVID-19 pandemic and the development of the conflict
between Ukraine and Russia caused an increase in the volatil-
ity of energy prices, resulting in an energy crisis with a
consequent increase in commodity market prices. As shown
in figure 1, the impact of these two crises, health and energy,
manifested itself mainly in Phase 4, leading to a significant
increase and variability of permit prices compared to the pre-
vious phase. High energy costs directly impact the operational
expenses of EU ETS participants, potentially obstructing
their compliance with emission reduction goals and imped-
ing progress towards mandated targets. Barros et al. (2016)
found that carbon dioxide emissions have experienced a sig-
nificant rise in recent decades, with the study revealing high
persistence in emissions and their components, particularly
in cement production. By applying long memory methods
instead of traditional techniques, the research identified struc-
tural breaks occurring after World War II, which increased
the degree of dependence and slowed the convergence in
per capita emissions. This highlights the growing impact of
emissions and underscores the need for a nuanced understand-
ing of their long-term trends and dependencies. Furthermore,
the energy crisis and its consequences on industrial produc-
tion have broader economic implications within the EU ETS
market. Reduced productivity and operational efficiency in
participating industries not only affect their financial perfor-
mance but also create a domino effect on the overall economy,
potentially leading to stagnant economic growth and pos-
ing challenges for policymakers and stakeholders involved
in environmental management and economic development.
Additionally, the interplay between energy costs, industrial
production, and economic growth influences the demand for
emission permits in the EU ETS market. Decreased produc-
tivity in industries results in reduced demand for emission
permits, leading to a decrease in the overall supply of avail-
able permits. This reduction in supply relative to demand
exerts upward pressure on permit prices, driving them higher
in the market. Understanding these interconnected factors
allows stakeholders, policymakers, and market participants
to navigate the complexities of the EU ETS market more
effectively and make informed decisions regarding emission
reduction strategies, market participation, and policy inter-
ventions aimed at achieving environmental objectives while
ensuring economic sustainability. Moreover, forecasting and
continuous monitoring of EU ETS prices empower compa-
nies within the system to anticipate future compliance costs,
make informed investment decisions in emissions reduction
technologies, and skilfully manage their carbon risk expo-
sure. Indeed, analysts and regulators responsible for design-
ing, implementing, and evaluating carbon pricing policies,
including the EU ETS, rely on price forecasts to assess
policy effectiveness, anticipate market dynamics, and make
informed policy decisions. Accurate price forecasts inform
the setting of emission caps, the allocation of allowances,
and the adjustment of policy parameters to achieve emissions
reduction targets efficiently. Finally, financial institutions in
carbon trading and low-carbon projects utilise price forecasts
for credit risk assessment, hedging strategies, and customised
financial products. Accurate forecasts aid in offering effective
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Figure 1. EUA price.

risk management solutions and promoting sustainable finance
initiatives.

1.3. Literature review

From an energy transition perspective, the literature offers a
wide range of methods and models, providing interpretative
keys and perspectives to help navigating through the chal-
lenges and opportunities described in the previous section.

In their analysis, Benz and Trück (2009) delved into the
balance of supply and demand within the carbon market,
categorised policy and regulation as pivotal components shap-
ing the supply dynamics, highlighting that the carbon price
is directly determined by the demand and supply of carbon
allowances. To this end, subsequent studies have concluded
that the price of fuel (mainly oil, natural gas and coal) is
one of the most important determinants of permit prices,
e.g. Mansanet-Bataller et al. (2007), Alberola et al. (2008),
Keppler and Mansanet-Bataller (2010), Hintermann (2010),
Chevallier (2011b), Creti et al. (2012), Byun and Cho (2013).
In these studies, economic activity is an important driver of
EUA price, generally using stock market indices as indicators
of economic activity. In addition, also in Trabelsi et al. (2023),
natural gas is a key factor for EUA price. In particular, the
Authors noted a dependency between the crude oil sector and
the European emissions market. Furthermore, an increase in
electricity prices is associated with an increase in allowance
prices.

In Aatola et al. (2013) the determinants of the EUA permit
price are studied through a time series analysis. Companies,
by producing goods and reducing emissions, influence the
price of permits. Empirical data from 2005 to 2010 show a
strong relationship between the price of permits and funda-
mentals such as electricity, gas and coal prices, confirming
the importance of these variables in determining the price of
EUAs. For example, Hammoudeh et al. (2014a) used a quan-
tile regression approach to examine how fluctuations in oil,
natural gas, coal and electricity prices affect the distribution of
EUA price. The main conclusions are that an increase in crude
oil prices causes a significant drop in EUA price. Gas prices

negatively affect the EUA at low levels, but positively when
those are high. Electricity impacts positively at the high end
of the distribution, while coal prices have a negative influence
on EUA price.

Also, in Hammoudeh et al. (2014b) a Bayesian Structural
Vector Autoregressive Model (BSVAR) was used to analyse
the short-term dynamics of CO2 emission prices in response
to changes in oil, coal, natural gas and electricity prices.
The results indicate that a positive shock in crude oil prices
initially increases CO2 allowance prices, but subsequently
shows a negative impact; an unexpected increase in natural
gas prices reduces CO2 prices; a positive shock in coal prices,
the primary fuel source, has minimal and statistically insignif-
icant effects on CO2 prices; a significant positive impact of
coal prices on CO2 allowances emerges when excluding elec-
tricity prices from the BSVAR framework; and a positive
shock in electricity prices negatively affects CO2 allowance
prices. Furthermore, the study identifies persistent impacts
of energy price shocks on CO2 allowance prices, with the
most significant effects occurring six months after the shock.
This effect is particularly evident in the case of shocks to
natural gas and crude oil prices. In contrast, the following
Authors emphasised the time-varying relationship between
carbon prices and other variables. Moreover, also through a
VAR model, Wang and Guo (2018) and Ji et al. (2018) high-
light the crucial role of Brent oil yields on moving window
price returns and volatility of carbon and energy prices. In
particular, Chevallier (2009) and Ren et al. (2022b) explain
the correlation present between permit and bond prices. Tan
et al. (2020) applied a variance decomposition to calculate the
directional connection in the Carbon-Energy-Finance system,
showing that the carbon market is correlated with the stock
and non-energy commodity markets.

In Chevallier (2011b) the dynamic relationship between oil,
gas and carbon prices is assessed, finding that carbon prices
in Europe display a weak negative association with both oil
and natural gas prices, both in Phases 2 and 3. Moreover,
in Chevallier et al. (2019) the dependency structure between
EUA yields and primary energy price yields (coal, gas, oil
and electricity), modelled via a Vine copula, shows that EUA
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was only correlated with energy prices and that the link with
oil and gas prices is negative. Furthermore, the Authors turn
to the approach of Granger causality, not only to understand
the relationship between stock market and EUA spot prices,
but also to achieve better forecast predictions for the future
EUA values Jiménez Rodriguez (2019), highlighting causal-
ity between common factors. It is observed that the causal
relationship between stock markets and EUA spot prices
provides valuable insights for decision-makers. Additionally,
Gil-Alana et al. (2016) found that CO2 emission allowance
prices exhibit significant persistence, with integration orders
close to or slightly below 1, indicating that price shocks tend
to have enduring effects. However, after accounting for struc-
tural breaks in the data, the persistence decreases, suggesting
that recent shocks have become less enduring over time. This
implies that earlier periods needed more robust policies to
restore CO2 levels following shocks, while in later periods,
the effects of such shocks have become more transient. The
reduced persistence is attributed to factors such as the finan-
cial crisis and the implementation of active climate and energy
policies.

In their study, Ji et al. (2018) and Wang and Guo (2018)
investigate an asymmetric volatility spillover effect between
the EUA carbon market and the prices of WTI oil, Brent oil
and EU natural gas. Focusing on how information connections
and overflow effects operate between the carbon and energy
markets, and analysing the interaction between returns and
volatility within the carbon-energy system. Crude oil, clean
energy and coal are identified as key players shaping both
return and volatility patterns. In particular, the electricity mar-
ket is highlighted as the main recipient of net carbon market
influenced information. Additionally, overflow effects are sig-
nificantly more pronounced in the volatility system than in
the returns system (Yuan and Yang 2020). In Phase 2 there
was a strong coal spillover effect on the carbon market, while
in Phase 3 natural gas became increasingly important (Gong
et al. 2021).

From a forecasting perspective, Wang and Zhao (2021)
apply a Bayesian network to select the most informative vari-
ables for predicting permit prices, pointing out that natural
gas and crude oil directly affect the carbon price, while the
S&P500 and the Global Clean Energy Index have an indirect
impact. Zhao et al. (2018) found that macroeconomic volatil-
ity and energy disruptions, especially during the COVID-
19 pandemic and energy crisis, significantly altered market
dynamics, making EU ETS prices more sensitive to energy-
related factors. This shift highlights the need for a broader
approach to market analysis to better predict price fluctua-
tions driven by changes in energy supply and demand. Using
combination-MIDAS regression models, the study forecasts
weekly carbon prices based on daily data from Coal, Crude
Oil, Gas, and Euro Stoxx 50 prices. Coal was identified
as the most influential long-term predictor. The combined
models, which outperform individual predictors, suggest a
general decline in carbon prices over the next month. Includ-
ing weather and air quality could further improve prediction
accuracy in future research. Adekoya (2021) studied the pre-
dictive power of crude oil, natural gas and coal prices in
predicting the European carbon price. The Authors found that
changes in carbon prices are only weekly correlated with

changes in coal prices, but are strongly correlated with natural
gas.

The problem of mixed-frequency data is common in econo-
metrics and time series analysis to describe a situation where
data is collected at different time intervals. For example, in
the field of economic and financial research, it is common to
have data acquired on a daily, weekly, monthly, or quarterly
basis. Integrating these different data frequencies presents
challenges due to the conventional assumption in time series
models of a uniform frequency (Roberts et al. 2013).

MIDAS models (Ghysels et al. 2020) are the most relevant
parametric model used in scientific literature for combining
high-frequency and low-frequency data. Mainly used to anal-
yse and forecast macroeconomic indicators and study mone-
tary policy effects (Ghysels 2016). MIDAS models specify a
relationship between variables and estimate parameters, often
assuming a specific functional form like a weighted sum
or regression with lagged terms to handle mixed-frequency
data. The parameters of the model are estimated using sta-
tistical techniques such as maximum likelihood estimation or
Bayesian methods.

To the best of our knowledge, the only effective method-
ology for the identification of inter-temporal information
appears to be Wavelet decomposition. This technique is not
widely applied in the study of financial or energy markets of
a parametric type. Wavelet analysis is a mathematical tech-
nique used to examine signals and time series in both the time
and frequency domains. Key parameters in Wavelet analy-
sis include scale and translation, representing the width and
position of the Wavelet, respectively. The resulting Wavelet
coefficients indicate the contribution of different frequency
components at various scales, facilitating the identification
of significant features in the signal (Soltani 2002, Wang
et al. 2018). In their work, Spelta and De Giuli (2023)
explore the connections between the market performance of
the renewable energy sector and the fossil fuel energy sector
in Europe. The study employs a multi-resolution analysis of
the series using tools derived from Wavelet analysis, which
breaks down time series into their time scale components
associated with specific frequency ranges, proves valuable
in examining the co-movements of fossil fuel and renewable
index prices across various time horizons.

1.4. Goals

In an environment characterised by considerable instability
it is crucial for market participants to understand the fac-
tors affecting the carbon price in order to manage market
risk more effectively. Furthermore, determining whether the
carbon price is influenced by fundamental or by financial
nature is crucial. There is a further actor interested in car-
bon price analysis: the European policy maker. As already
stated, the EU ETS market represents a key instrument for
European climate policy, and the carbon price is a crucial
indicator for assessing the effectiveness of European climate
policy. It makes it possible to assess whether European policy
is achieving the targets set in the Kyoto Protocol and the 2030
Agenda, and whether it needs any corrections.

The primary focus of this study is to investigate the
dynamics of carbon pricing, with a particular emphasis on
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identifying the factors that influence its fluctuations. By doing
so, we aim to enhance market risk management practices for
investors, enabling them to make more informed decisions in
an increasingly volatile market. Additionally, the study seeks
to provide a deeper understanding of the strategic levers avail-
able to European policymakers for controlling carbon prices,
thereby positioning the EUA as a more effective tool in the
broader effort to mitigate climate change. Drawing inspira-
tion from previous investigations into the EUA, our research
aspires to deliver new, robust findings that are both empirical
and methodological in nature, offering a more comprehen-
sive perspective on the carbon market’s behaviour and the
potential pathways for policy intervention.

On the empirical side, our first objective is to propose a
non-parametric approach based on information theory, and
specifically on the recently introduced Information Imbal-
ance measure (Glielmo et al. 2022b), to identify the main
exogenous variables driving the EUA price. To the best of
our knowledge, a similar non-parametric analysis has never
been proposed in the literature. We use Information Imbalance
to also investigate the differences between the informative
variables in the two Phases taken into consideration, thus
verifying whether there is a disparity in price determinants
between Phase 3, where the price of permits is much more
stable, compared to Phase 4 where health and energy crises
bring high instability to the price.

On the methodological side, this work proposes the use of
the Information Imbalance in combination with Gaussian Pro-
cess regression to combine, at the most informative time scale,
mixed frequency data to build forecasting or nowcasting mod-
els. Finally, our work also shows how the Information Imbal-
ance can be used to select a small set of highly informative
variables for such prediction models.

1.5. Organisation of the work

The remainder of this work is organised as follows. Section 2
describes the dataset used. Section 3 introduces the essential
theoretical background on Information Imbalance and Gaus-
sian Process regression, and outlines how these are leveraged
for our aims. Section 4 is centred on the empirical results,
and describes the application of the Information Imbalance for
the analysis of the EUA price determinants, while section 5
focuses on the methodological results and illustrates how
Information Imbalance and Gaussian Process regression can
be combined to build efficient nowcasting and forecasting
models on mixed-frequency data. Concluding remarks are
given in section 6.

2. Data

We collect daily closing prices of EUA from Bloomberg®,
spanning from January 2014 to April 2023. This dataset
consists of 2374 observations, extending beyond the period
examined in Wang et al. (2023). Consistent with previous
studies on EUA price, we exclude both Phase 1 and Phase 2 of
the market from our analysis. This decision is justified by the
evidence that during Phase 1 and Phase 2, price fluctuations

are known to have been primarily influenced by regulatory
and policy changes, given that the market was still in a testing
phase.

Following other existing studies such as Chevallier (2011a),
Byun and Cho (2013), Tan et al. (2022), Ren et
al. (2022a, 2022b), Aller et al. (2021), we categorise
the 33 predictors into 6 categories, relating to geopoliti-
cal, economic, and financial uncertainty, commodities, some
exchange rates, energy indices, national indices, the main
European index, and finally, macroeconomic variables. All
predictors were collected daily, except for Euro-area Inflation
collected monthly and Euro-area GDP collected quarterly.
The reference period is the same as the one of the target vari-
able, with the same number of observations for daily-collected
predictors and with 114 and 37 observations for monthly
Inflation and quarterly GDP, respectively. First, we consider
6 predictors related to uncertainty, namely: (1) GeoPolitical
Risk (GPR) index; (2–6) uncertainty indexes of major world
exchange rates: EUR/USD, EUR/JPY, EUR/GBP, EUR/CHF.
The uncertainty factors are collected on Bloomberg, while
the GPR is collected from its dedicated website (Caldara and
Iacoviello 2022). Second, we include the following 8 com-
modities not necessarily related to energy: (7) ICE Dutch
natural gas futures; (8–11) electricity prices for Spain, Ger-
many, Italy, and France; (12) ICE Brent oil futures; (13)
ICE Rotterdam coal futures, and finally (14) the gold index.
Third, we consider major spot interest rates to explore the
possible purely financial and highly volatile effects, (15–
18): EUR/USD, EUR/JPY, EUR/GBP, EUR/CHF. Fourth, we
include the following 6 European energy indices to explore
the informational content of energy indices of different nature:
(19) Bloomberg Energy price return index; (20) Solactive
ESG Fossil Eurozone 50 index; (21) S&P Eurozone 50 Envi-
ronmental index; (22) MSCI Europe Energy Sector index;
(23) ERIX index; (24) EUROSTOXX Electricity index. Then,
we consider the influence of 4 industrial countries and one
European index to explore the predictive content of finan-
cial activities: (25) EUROnext100; (26) IBEX35; (27) DAX;
(28) CAC; (29) FTSE Mib. Finally, we consider the influence
of the economic cycle and European macroeconomic condi-
tions, considering: (30) Euro-area 3-month bond yield; (31)
Euro-area 10-year bond yield; (32) Euro-area inflation; (33)
Euro-area GDP.

As already noted, variables (32) and (33) are collected at
a frequency different from the daily one of the EUA target
variable, and hence require a degree of data imputation to
facilitate the examination of their impact. These imputations
can incur in errors and lead to information loss. For this reason
we decided to keep these two variables out of our empiri-
cal analysis and to use only variables that have undergone no
transformation. However, Euro-area inflation and Euro-area
GDP are included in the analysis we perform in section 5,
where we put forward a non-parametric approach to over-
come this mixed frequency problem. Our variable selection
process involved a comprehensive review of literature and
deep market understanding. By introducing new metrics such
as GDP and Inflation alongside traditional ones, we success-
fully address the challenge of mixed frequency in studying the
macroeconomic dynamics with EUA. Furthermore, consider-
ing macroeconomic indicators like GDP and inflation when
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Figure 2. The Information Imbalance.

studying EU ETS price determinants is essential for gain-
ing insight into the broader economic landscape, discerning
market sentiments, and anticipating policy implications for
emissions trading (Konradt et al. 2024).

3. Methods

3.1. The information imbalance

The Information Imbalance is a measure recently introduced
to quantify the degree to which one or more variables can
be used for predicting another set of variables (Glielmo et
al. 2022b). The Information Imbalance can be formulated
in information-theoretic terms using the theory of copulas
as explained in Glielmo et al. (2022b). For brevity, we will
not review its theoretical underpinning but rather its practical
definition and interpretation.

Given a variable X and any two points (or statistical units)
i and j, the rank rX

ij of j with respect to i is obtained by sorting
pairwise distances between i and all other points in ascending
order. The rank rX

ij is the position of the distance between i
and j in the ordered sequence. For example, rX

ij = 1 if point
j is the closest to point i according to the distance dX . Simi-
larly, rY

ij is the rank of j with respect to i according to distance
dY and, in general rY

ij �= rX
ij . The Information Imbalance from

X to Y, �(X → Y ), can then be defined on a dataset with
N points on which we record joint values for both X and
Y, as

�(X → Y ) = 2

N
E [rY | rX = 1] . (1)

where the expected value is taken only over the nearest neigh-
bour points according to variable X. By construction, in the
limit of N → ∞, the Information Imbalance is statistically

confined in the interval (0, 1), with �(X → Y ) ≈ 0 imply-
ing that X is fully informative for Y and, conversely, �(X →
Y ) ≈ 1 implying that X carries no information useful for
predicting Y. This limiting behaviour is readily understood
from equation (1). For identical variables, the expected value
in the equation evaluates to 1, and the Imbalance evaluates to
2/N, a number close to zero for large enough N. For com-
pletely unrelated variables, the expected value evaluates to
N /2 and the Imbalance to 1, on average.

The Information Imbalance plane is a plot of �(X → Y )

vs �(Y → X ). A point in such a plane represents the rela-
tionships between any two variables (X , Y ). This is illustrated
in figure 2, where 4 types of synthetic datasets are anal-
ysed through the Information Imbalance plane. Specifically,
in panel A1 variables X and Y are related purely by Gaussian
noise, their Pearson correlation ρ is zero, and the �(X →
Y ) = �(X → Y ) = 1, resulting in a blue circle in the top
right of the Information Imbalance plane. In A2 some cor-
relation exists between the two variables, and this results in
a higher value of the Pearson correlation ρ and in a gradual
shift in the Information Imbalance plane from one towards
zero along the diagonal of the plane. The lower is the noise
level around the linear relation between X and Y the closer to
zero is the corresponding point in the Information Imbalance
plane: compare the orange triangle with the green square.
These linear relationships are trivially captured by the Pearson
correlation coefficient ρ as well as by the Information Imbal-
ance which, however, can also be used to probe much more
complex dependencies (both nonlinear and multivariate) as
illustrated in A3 and A4. In A3, the nonlinear (quadratic) rela-
tionship results in a linear correlation of zero, but gives rise to
a low value of the Information Imbalance �(X → Y ) and a
high value of �(Y → X ) indicating that Y can be predicted by
X better than the opposite. In A4, a multivariate relationship
exists between x1, x2 and Y whereby two variable combina-
tion [x1, x2] is much more useful in predicting y than any one
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of the two taken singularly. Once again the linear correlation
ρ cannot capture such an effect, while the Information imbal-
ance �(X → Y ) drastically decreases as x2 is added to x1 in
the set of explanatory variables: compare the two purple stars
in figure 2.

3.2. Gaussian process regression

A Gaussian Process (GP) is a powerful and versatile statis-
tical tool used in various fields, including machine learning
(Williams and Rasmussen 2006), statistics (Shi et al. 2020) or
Bayesian optimisation (Wilson et al. 2016). GPs have gained
popularity due to their flexibility and their effectiveness in
quantifying uncertainty, they are a well-known approach to
representing functions in a non-parametric setting along with
neural networks.

A GP can be conceived as an infinite-dimensional generali-
sation of a multivariate Gaussian distribution. More precisely,
a GP is a collection of random variables, where any finite sub-
set of them follows a multivariate Gaussian distribution. To
define a GP we first need to select a mean function μ(x),
which provides the expected value of the modelled func-
tion μ(x) = E[f (x)]. Without loss of generality, the GP mean
function is typically assumed to be zero as the GP is typ-
ically applied to standardised data. We adopt this common
practice throughout this work. The second and fundamental
component of a GP is the covariance function (or kernel), a
function that characterises the relationships between different
points in the function’s domain and quantifies the correla-
tion or similarity between function values at different input
points:

k
(
x, x′) = E

[
f (x)f (x′)

]
. (2)

The choice of the GP’s kernel function should take into
account the relationships or dependencies between data from
different sources. We tested various kernel functions for this
work, such as Radial Basis Function (RBF), additive, mul-
tiplicative with and without constants, and Matern kernel,
ultimately selecting the latter, defined as

kMatern(x, x′) = 1

�(ν)21−ν

×
(√

2ν
‖x − x′‖

l

)ν

Kν

(√
2ν

‖x − x′‖
l

)
.

(3)

In the Matern kernel, the ν parameter controls the smoothness,
and the l parameter controls the length scale of variations of
the resulting function. Once a covariance function is selected,
the GP can be used as a prior distribution and can be fit
to a dataset D = {(xi, yi)}N

i=1 in Bayesian regression called
Gaussian Process regression. The posterior distribution in a
Gaussian Process regression is also a GP and the posterior
mean, the curve that best fits the data, can be computed
analytically

μ(x∗) = kT
∗ (K + σ 2

n I)−1y, (4)

where (K)ij = k(xi, xj) is an entry in the kernel matrix,
(k∗)i = k(xi, x∗) is the kernel between the dataset and the test
point, and σ 2

i controls the level of noise that is assumed to be
present in the data.

3.3. Information imbalance and Gaussian processes for
the analysis EUA price

3.3.1. Price determinants. The Information Imbalance rep-
resents a rather natural tool to use to answer the question of
what determines the price of the EUA. In this work we use
the Imbalance �(Xt → EUAt+δt) to quantify the information
that a predictor set Xt at time t, which can encompass any
combination of variables in table 1, contains on the target
variable EUAt+δt, at time t + δt. We use the implementa-
tion of the Information Imbalance available in the DADApy
package (Glielmo et al. 2022a). In the quest for informa-
tive variables, Wavelet decomposition stands as a parametric
alternative to Information Imbalance. However, it comes with
drawbacks. Firstly, it significantly inflates the dimensional-
ity of the feature space, posing computational hurdles and
necessitating additional steps for dimensionality reduction
(Liu 2009). Moreover, its computational demands are mag-
nified, particularly with high-dimensional data, impacting the
efficacy of feature selection algorithms (Pati et al. 1993).
On the other hand, Information Imbalance, rooted in a
non-parametric framework, circumvents dimensionality infla-
tion, maintaining lower computational intensity. It furnishes
robust outcomes even amidst the challenges of outliers and
noise.

3.3.2. Mixed frequency forecasting. We propose a non-
parametric method that leverages Gaussian Processes in con-
junction with the Information Imbalance to optionally aggre-
gate data from different time frequencies. An example of
imputation and aggregation of time series using GPs is shown
in figure 3. For the imputation—left panel of the figure—a
GP is fit to the data using a low noise level of σ 2

n = 10−3 just
needed to regularise the inversion in equation (4), and the pos-
terior GP mean is then used to compute the value of the time
series at the needed frequencies. For the aggregation—right
panel of the figure—the GP noise level is set to the average
rolling variance of the time series computed using the target
period as the rolling window; and the posterior GP mean is
similarly used to compute the value of the time series at the
needed frequencies. We also used GPs to perform experiments
of nowcasting and forecasting of allowance prices.

Additionally, a k-fold cross-validation with k = 5 was
applied. In all our experiments, we set the smoothness param-
eter, ν, to 1.5, the largest degree of smoothness compatible
with all the time series available, and we select the length
scale, l, separately for every fit using a maximum likelihood
optimisation (Williams and Rasmussen 2006). GPs are very
flexible stochastic processes and they have been extensively
used in the literature to model non-Gaussian data (Williams
and Rasmussen 2006). For example, in figure 3 we can
see how a GP properly fits the clearly non-Gaussian EUA
price.
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Table 1. Dataset description. List of the 34 time series used in this study, along with their source, divided in 7 categories.

ID Category Variables Start to end Database

0 T EUA (EUA) January 2014–April 2023 Bloomberg®

1 UNC GPR January 2014–April 2023 GPR website
2 UNC VSTOXX (V2X) January 2014–April 2023 Bloomberg®

3 UNC Uncertainty EUR/USD (CAFZUUEU) January 2014–April 2023 Bloomberg®

4 UNC Uncertainty EUR/JPY (CAFZUEJP) January 2014–April 2023 Bloomberg®

5 UNC Uncertainty EUR/GBP (CAFZUEGB) January 2014–April 2023 Bloomberg®

6 UNC Uncertainty EUR/CHF (CAFZUECH) January 2014–April 2023 Bloomberg®

7 COM ICE Dutch TTF Natural Gas (TTF0NXHR) January 2014–April 2023 Bloomberg®

8 COM Electricity Prices Spain (OMLPDAHD) January 2014–April 2023 Bloomberg®

9 COM Electricity Prices Germany (EXAPBDHD) January 2014–April 2023 Bloomberg®

10 COM Electricity Prices Italy (ELIODAHD) January 2014–April 2023 Bloomberg®

11 COM Electricity Prices France (PWNXFRAV) January 2014–April 2023 Bloomberg®

12 COM ICE Brent oil futures (CO1 Comdty) January 2014–April 2023 Bloomberg®

13 COM ICE Coal Rotterdam futures (TMA Comdty) January 2014–April 2023 Bloomberg®

14 COM Gold (GCZ3 Comdty) January 2014–April 2023 Bloomberg®

15 ER EUR/USD spot (EUR/USD) January 2014–April 2023 Eikon Refinitiv®

16 ER EUR/JPY spot (EUR/JPY) January 2014–April 2023 Eikon Refinitiv®

17 ER EUR/GBP spot (EUR/GBP) January 2014–April 2023 Eikon Refinitiv®

18 ER EUR/CHF spot (EUR/CHF) January 2014–April 2023 Eikon Refinitiv®

19 ENR Bloomberg Energy price return index (EUNRJP) January 2014–April 2023 Bloomberg®

20 ENR Solactive ESG Fossil Eurozone 50 index (S0ESG50N) January 2014–April 2023 Bloomberg®

21 ENR S&P Eurozone 50 Environmental index (SPEENDET) January 2014–April 2023 Bloomberg®

22 ENR MSCI Europe Energy Sector index (MXEU0EN) January 2014–April 2023 Bloomberg®

23 ENR ERIX index January 2014–April 2023 Bloomberg®

24 ENR EUROSTOXX Electricity index (SXEELC) January 2014–April 2023 Bloomberg®

25 CTRY EUROnext100 (N100) January 2014–April 2023 Bloomberg®

26 CTRY IBEX35 (IBEX) January 2014–April 2023 Eikon Refinitiv®

27 CTRY DAX January 2014–April 2023 Eikon Refinitiv®

28 CTRY CAC January 2014–April 2023 Eikon Refinitiv®

29 CTRY FTSE Mib January 2014–April 2023 Eikon Refinitiv®

30 MACRO Euro-area 3-month bond yield January 2014–April 2023 Bloomberg®

31 MACRO Euro-area 10-year bond yield January 2014–April 2023 Bloomberg®

32 MACRO Euro-area inflation (HICP) January 2014–April 2023 Eurostat
33 MACRO Euro-area GDP (current value) January 2014–April 2023 Eurostat

Category T: Target; Category UNC: Uncertainty variables; Category COM: Commodity related variables; Category ER: Exchange rates;
Category ENR: Energy-related indexes/variables; Category CTRY: Country indexes; Category MACRO: Macro-economic variables.

Figure 3. Imputation and aggregation using GPs.
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Table 2. Descriptive statistics. Mean, standard deviation, minimum, maximum and three percentiles of the 34 time series considered
in this work.

ID Variables Mean STD Min 25% 50% 75% Max

0 EUA 27.31 27.55 3.93 6.41 17.59 32.59 100.29
1 GPR 113.50 52.80 9.49 79.90 103.89 136.51 542.66
2 VSTOXX 20.87 7.38 10.68 15.88 19.45 24.03 85.62
3 Unc. EUR/USD 2.66 0.60 1.57 2.21 2.57 3.05 4.28
4 Unc. EUR/JPY 2.96 0.60 1.32 2.64 2.99 3.31 5.69
5 Unc. EUR/GBP 2.42 0.64 1.36 1.94 2.37 2.72 6.64
6 Unc. EUR/CHF 1.85 0.73 0.98 1.49 1.74 1.98 8.92
7 Natural Gas 33.90 41.47 3.63 14.90 19.15 24.57 311
8 Elec. Prices Spain 69.82 53.82 1.10 42.61 52.34 65.55 544.98
9 Elec. Prices Germany 69.23 83.68 − 9.12 31.53 39 58.61 682.89
10 Elec. Prices Italy 92.18 96.61 10.66 46.95 55.67 74.10 718.71
11 Elec. Prices France 92.18 96.61 10.66 46.95 55.67 74.10 718.71
12 Brent oil 66.97 21.97 17.32 50.19 63.49 79.17 133.89
13 Coal futures 118.37 97.02 48.50 64.51 82.48 109.83 457.80
14 Gold 1457.71 274.68 1051.10 1240.92 1319.00 1760.34 2063.54
15 EUR/USD spot 1.15 0.08 0.96 1.10 1.13 1.18 1.39
16 EUR/JPY spot 129.74 8.11 111.15 123.42 129.68 135.82 149.18
17 EUR/GBP spot 0.84 0.05 0.69 0.83 0.86 0.88 0.94
18 EUR/CHF spot 1.10 0.06 0.95 1.06 1.09 1.14 1.24
19 Bloomberg Energy price return index 1.10 0.06 0.95 1.06 1.09 1.14 1.24
20 Solactive ESG Fossil Eurozone 50 index 101.58 17.01 48.01 91.17 106.05 113.87 130.32
21 S&P Eurozone 50 Environmental index 127.29 26.58 84.21 107.34 122.45 139.70 199.47
22 MSCI Europe Energy Sector index 1477.89 152.24 1059.38 1350.86 1467.14 1560.97 1870.90
23 ERIX index 1325.94 617.13 567.78 840.82 1028.58 1949.09 3106.55
24 EUROSTOXX Electricity index 314.53 67.26 212.46 253.71 284.09 379.67 471.78
25 EUROnext100 1034.78 156.67 733.93 899.78 1016.07 1133.29 1388.09
26 IBEX35 1034.78 156.67 733.93 899.78 1016.07 1133.29 1388.09
27 DAX 12 216.79 1870.47 8441.71 10 685.23 12 238.56 13 263.39 16 271.75
28 CAC 5337.46 840.69 3754.84 4615.03 5234.00 5882.29 7577
29 FTSE Mib 21623.98 2699.71 14 894.44 19 727.58 21 674.43 23 329.29 28 162.67
30 Euro-area 3-month bond yield − 0.38 0.68 − 1.13 − 0.71 − 0.59 − 0.29 4.55
31 Euro-area 10-year bond yield 0.39 0.74 − 0.85 − 0.21 0.32 0.68 2.75

Figure 4. Correlation analysis.

4. Price determinants

4.1. Descriptive statistics and correlation analysis

Table 2 shows the descriptive statistics of all predictors and
EUA, showing the mean, the standard deviation (STD), the
minimum, the 0.25, 0.5 and 0.75 percentiles and the maxi-
mum value. In figure 4 we present the correlations between
the explanatory variables and the EUA price, for each phase.
We notice that the variables belonging to the commodity cat-
egory turn out to be highly correlated with the EUA price;

this is a predictable result as they share the same category.
In contrast, during Phase 3, the uncertainty-related variables
are poorly correlated with the target variable. Especially dur-
ing Phase 4 most of the considered variables have a positive
correlation, with a large number of them being highly cor-
related. The exchange rates are not very correlated with our
target variable in Phase 3, although some of these rates, as
EUR/CHF Spot and EUR/USD Spot are strongly negatively
correlated in Phase 4. Finally, we can observe that the correla-
tion between EUROSTOXX Electricity prices index, ERIX
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Figure 5. Daily Information Imbalance analysis.

index and S&P Euro50 Environmental index, undergoes a
substantial change, shifting from a strong positive correlation
in Phase 3 to a strong negative correlation in Phase 4.

We note that the correlation analysis conducted in this
section serves to set a baseline for the relevance of the
explanatory variables in our dataset, and to highlight the abil-
ity of Information Imbalance to detect non-linear relationships
that are by definition, missed by correlations.

4.2. Information Imbalance analysis

Unlike traditional parametric econometric models, the Infor-
mation Imbalance does not require any assumption on the
underlying data-generating process but rather allows working
with the variables as they were collected so as not to alter the
results in any way. This is undoubtedly one of the main advan-
tages of the adopted non-parametric approach, which provides
a lower level of restriction than any other parametric analysis.

In figure 5, the two Information Imbalance planes for Phase
3 and Phase 4 are shown. In these two plots, the Information
Imbalance between individual explanatory variables Xt and
the target variable EUAt are reported. On the x-axis we find
the Information Imbalance from the predictors set towards the
target set (�(Xt → EUAt)), while the opposite relationship
(�(EUAt → Xt)) is presented on the y-axis. It is interesting
to compare the two and observe the main differences between
the two phases in terms of informative variables.

As far as Phase 3 is concerned, the single most informa-
tive variable is the ERIX index which monitors the progress
of European renewable energy companies involved in one
or more of six investment clusters, which include biofuels,
geothermal, marine, solar, hydro and wind energy. Kanwal
and Khan (2021) demonstrated how EUA shares are inde-
pendent of the ERIX index by analysing their time-varying
correlation using a GO-GARCH model. However, our study
shows that the information content of the ERIX index relative
to EUA is very high compared to the other variables taken into
account, opening up possible new interpretations. In particu-
lar, we can say that the price behaviour of the ERIX index is
close to that of the EUA, suggesting similar market dynam-
ics. Although renewable energy sources do not participate
directly in emissions trading, their importance lies in shaping
the broader dynamics of the market (Chun et al. 2022). The
use and promotion of renewable sources contribute to an over-
all reduction of greenhouse gas emissions in the energy sector
(Hailemariam et al. 2022). Consequently, they complement

the objectives of the EU Emissions Trading Scheme, which
aims to reduce emissions from industrial activities. In some
situations, renewable energy projects generate carbon cred-
its or offsets, symbolising the reduction or avoidance of
greenhouse gas emissions. Companies participating in the EU
emissions trading system can use these credits to offset a
portion of their emissions, thus fulfilling compliance obliga-
tions more effectively. The demand for emission allowances
in the EUA is influenced by the energy composition (Hanif et
al. 2021). Increased use of renewable energy sources can lead
to reduced emissions from the power generation sector, thus
influencing the supply and demand dynamics in the emissions
trading market. The EU is actively working on integrating
renewable energy policies with emission reduction targets.
For example, the European Commission (2018) sets binding
targets for the share of renewable energy in the EU’s final
energy consumption. This integration ensures that efforts to
promote renewable energy are in line with broader climate
goals, including those of the EU Emissions Trading Scheme.
Furthermore, the EU Emissions Trading Scheme creates eco-
nomic incentives for investments in cleaner technologies,
including renewable energy projects. Companies investing in
renewable energy can benefit not only from the sale of clean
energy, but also from potential gains from the sale of emission
allowances or carbon credits (European Commission 2023).
In addition, in Phase 3, we see that the most informative
individual variables are all intertwined with the European
energy market, such as the EUROSTOXX Electricity index.
We also find variables such as 3 month and 10 year bond
yields which represent the interest rate required by investors
to hold Eurozone government bonds with a maturity of 10
years and 3 months respectively. This indicator is significant
because changes in bond yields provide valuable informa-
tion on market expectations related to economic conditions,
inflation and monetary policy (Altavilla et al. 2014). In Phase
4, we observe a situation that differs but bears resemblances
in certain aspects. In particular, we can appreciate how vari-
ables reflecting financial fluctuations turn out to have a much
greater importance than in Phase 3. Uncertainty regarding an
exchange rate, as in the case of the EUR/CHF uncertainty, the
most informative variable at this phase, refers to the lack of
predictability or confidence in the future movements of a cur-
rency pair. High volatility in the exchange rate signals height-
ened uncertainty. Exchange rate options (in particular, implied
volatility) offer insights into market participants’ expectations
on future currency movements (Beckmann and Czudaj 2017).
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Figure 6. Information Imbalance analysis of Phase 3 and Phase 4 EUA price determinants.

Changes in global risk sentiment, often reflected in stock
market movements, can influence demand for safe-haven cur-
rencies. Uncertainty about global economic conditions can
lead to increased volatility in currency markets. Extensive
speculative trading or sudden changes in market sentiment can
contribute to uncertainty. Rapid changes in market sentiment
based on the actions of speculators can lead to unpredictable
currency movements (Ferrara and Yapi 2022).

This difference in the selection of informative variables
shows how the impact of the COVID-19 pandemic and the
energy crisis completely disrupted the price dynamic, defining
new determinants of the EUA price. Industries covered by the
EUA may explore the possibility of transitioning from coal to
cleaner energy alternatives, such as natural gas or renewables,
driven by economic considerations and environmental goals.
The economic viability of these substitutions can be affected
by changes in coal prices (Böhringer and Rosendahl 2022).
Although both markets share similar influences, the two mar-
kets are not directly connected but can be influenced by
broader dynamics in the energy market, including shifts in
supply and demand, geopolitical events, and economic condi-
tions (Anke et al. 2020). Regulatory changes related to carbon
emissions and coal use can affect both markets, with stringent
regulations potentially increasing costs and affecting demand
for EUA permits. The transition to renewable energy sources
is a significant factor, which could reduce demand for coal and
influence the carbon market. Both markets are also influenced
by global factors such as international trade, energy prices and
climate change policies (Chun et al. 2022).

The changing energy landscape, with an increasing focus
on cleaner and more sustainable sources, has the potential
to change the demand for coal and the assessment of EUA
permits. Renewable energies, such as wind, solar, hydro and
bio-energy, represent low-carbon or carbon-neutral energy
sources. The use and promotion of these renewable sources
contribute to an overall reduction of greenhouse gas emis-
sions in the energy sector (Hailemariam et al. 2022). The
demand for emission allowances in the EUA is influenced
by the energy composition (Hanif et al. 2021). Increased
use of renewable energy sources can lead to reduced emis-
sions from the power generation sector, thus influencing the
supply and demand dynamics in the emissions trading mar-
ket. The EU is actively working on integrating renewable
energy policies with emission reduction targets. For example,

the European Commission (2018) sets binding targets for the
share of renewable energy in the EU’s final energy consump-
tion. It is crucial to recognise that although correlations exist,
each phase is subject to unique factors.

4.3. Greedy selection of variables

The greedy selection method applied in this analysis is
designed to identify the most informative subset of explana-
tory variables for predicting EUA prices. As illustrated in
figures 6 and 7, the algorithm follows an iterative process
to build this subset. The algorithm begins with an empty set
of explanatory variables, denoted as S0 = ∅, and iteratively
expands the set by adding variables that maximise the infor-
mation content relevant to the EUA price. At each iteration,
the algorithm evaluates the information content provided by
all remaining candidate informative variables not yet included
in the set St. The information content is typically measured
using criteria such as mutual information, information gain, or
information imbalance, which quantify how much additional
explanatory power a variable contributes when combined with
the current set St. The variable that provides the greatest
marginal contribution to the information content is selected
and added to the set, resulting in St+1 = St ∪ {X ∗}. The pro-
cess continues until all variables have been considered and
ranked within the set. The sufficiently informative subset in
figures 6 and 7 is identified in using the elbow rule, which
is observed when adding additional variables results in only
marginal changes in the slope of the information content
curve. To apply the elbow rule effectively, we opted not to
use a specific threshold. Instead, we concentrated on iden-
tifying the point where additional variables contribute only
marginally to the increase in information content. Figure 6
shows that the most informative subset for Phase 3 turns out
to contain the following explanatory variables: ERIX index,
Coal and Natural Gas. Looking beyond these three variables
is not advisable since the improvement in information content
is negligible. This effect can be seed in figure 6, where the
Information Imbalance is plotted as a function of the number
of variables (A, B), and from the corresponding Information
Imbalance plane (C, D) by observing the higher concentration
of dots as more variables are added to the set.

For Phase 4, the most informative subset turns out to be dif-
ferent with the exception of Coal. The distinctive feature we
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Figure 7. Frequency identification and variable selection through the Information Imbalance.

notice in this instance is the presence of the uncertainty indi-
cators computed over the exchange rates considered in this
study. Uncertainty in exchange rates can contribute to market-
wide uncertainties. Investors often regard currency fluctua-
tions as a risk, and elevated uncertainty in exchange rates may
prompt increased risk aversion among investors, potentially
influencing their behaviour in the EU ETS market. Central
banks’ actions in response to uncertainties in exchange rates
and changes in monetary policies can shape interest rates
and broader economic conditions. These dynamics, in turn,
may have implications for the regulatory framework and pol-
icy decisions related to emissions trading within the EUA
(Chevallier et al. 2011).

5. Time-scale aggregation and forecasting

5.1. Data frequency selection

Through the GP-based process of imputation and aggregation
described in section 3.2, we obtain 4 datasets at daily, weekly,
biweekly, and monthly frequencies. Given these datasets, we
use the Information Imbalance to identify the specific fre-
quency at which the predictors are most informative about
the EUA price. Specifically, for each frequency we per-
form the iterative greedy selection of variables described in
section 4.3 aimed at minimising the Information Imbalance
�(Xt → EUAt+δt) from the set of predictors at time index
t (Xt), to the EUA price at time index t + δt (EUAt+δt). We
perform such computations for a ‘nowcasting’ scenario with
δt = 0, and for a ‘forecasting’ scenario with δt = 1, indicat-
ing one day, one week, two weeks or one month depending on
the dataset.

The resulting imbalances are graphed in figure 7. We find
that, at all frequencies and for both time-lags δt, the informa-
tion content of the predictor set does not improve substantially
by adding more than 3 variables, in agreement with the results
already shown in figure 7. Furthermore, we find that for both
time-lags, data on a weekly frequency contain the greatest
information for predicting EUA price. This result indicates
that smoothing the daily price oscillations on a weekly scale
has a beneficial effect for easing the predictability of the EUA
price, since such oscillations can hardly be interpreted using
any of the considered features, but that smoothing over longer
time scales erases important existing relationships and impairs
predictive power. Given the greater information content of the

weekly frequency, and also for convenience and brevity, the
rest of the results in this section will be presented only for
such frequency.

5.2. Selection of predictor variables

This section presents an analysis of the predictors for
nowcasting (δt = 0) and forecasting (δt = 1) using the
Information Imbalance. The first result we analyse is the
Information Imbalance calculated between the target variable
(EUA) and each predictor presented in table 1 taken
individually (including Euro-area Inflation and GDP) for a
dataset comprising both phases 3 and 4. Figure 8 presents
the information content of all predictors with respect to the
target variable. Observing the imbalances, we note that, in
addition to GDP, the variables with higher predictive power
are the ERIX index, EUROSTOXX Electricity index, and
EUROnext100 index. Variables measuring uncertainty, like
GPR and VSTOXX indices, on the contrary, have very low
predictive power. In figure 8, we also present the results
obtained by calculating the Information Imbalance in a fore-
casting framework, where we define the predictors set as Xt

and the target set as EUAt+1. In particular, we observe that the
lagged value of one week, EUAt, is the most informative sin-
gle variable. Even with a time lag, we see that GDP remains
one of the most informative variables.

Figure 7 presents the results obtained via the iterative
greedy variable selection. It emerges that the most informa-
tive single variable is indeed GDP. This result confirms what
emerges inspecting figure 8. The most informative subset of
size 3 is GDP, Gold, and Coal prices. Given its nature as a
composite long-term variable, GDP is undoubtedly a valid
predictor for the long-term behaviour of economic and finan-
cial variables (Xu 1996), as is the case for EUA in our study.
Therefore, this variable can be used to predict future trends
in the price of our target variable. However, it is worth not-
ing that the model may have picked up a potential distortion
effect. The trajectory of GDP resembles a nearly continu-
ous upward trend, mirroring the dynamics of the EUA price,
which initially starts low and steadily rises in response to
COVID and the energy crisis. Furthermore, Gold is consid-
ered a traditional safe-haven asset, suggesting that investors
usually gravitate towards it during periods of economic uncer-
tainty or market volatility. Gold’s price movements often
reflect shifts in market sentiment during times of economic
instability or geopolitical uncertainty. Adding gold prices to
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Figure 8. Information Imbalance plane for nowcasting and forecasting EUA price.

Figure 9. Performance of a GP model build on: the 3 most informative variables; all variables; 3 randomly selected predictors (average over
10 replications).

a forecasting framework yields valuable insights into investor
sentiment and anticipated market trends (Mohtasham Khani
et al. 2021). Finally, the energy sector, particularly electric-
ity generation, is heavily reliant on Coal prices. Considering
the EU ETS encompasses various industries, notably power
generation where coal is a major factor, changes in Coal
prices serve as a significant indicator of broader energy market
dynamics. Consequently, these shifts can impact the demand
for, and pricing of, EU ETS allowances (Lovcha et al. 2022).

Figure 7 also shows the results of the greedy approach
in the presence of a time lag. Compared to the previous
nowcasting setting, in this case, our methodology identifies
very different informative subsets. In particular, now the most
informative subset of 3 variables is composed of the lagged
value of the target variable, GDP, and 3-month bond yield for
the Euro-area. The relationship between the 3-month bond
yield and EUA price may not be straightforward, but fluc-
tuations in short-term interest rates, reflected in the 3-month
bond yield, can indirectly influence economic conditions and
investor actions, potentially impacting the demand for and
pricing of EU ETS allowances (Chevallier 2009).

5.3. Prediction performances

We now verify that the information-driven and model-free
variable selection performed in the last section translates into
accurate prediction. As a benchmark model, we choose the
same GP regression model described in section 3 and already
used for imputation and aggregation purposes. Since the Infor-
mation Imbalance indicates that the additional information
content of predictors Xt is marginal when compared to the one

obtained with only 3 carefully selected variables, we compare
the performance of a GP built using those 3 most informative
variables, 3 randomly selected variables, and the full set of
33 variables in Nowcasting framework and 34 in Forecasting
framework, respectively.

Figure 9 presents the results of an experiment using Gaus-
sian Process (GP) models for both nowcasting (σ t = 0) and
forecasting (σ t = 1). Three models are compared: one using
the three most informative variables as selected by II, one
with all available variables, and one with three randomly
selected predictors (results presented are averaged over ten
replications). The figure displays scatter plots of residuals and
predicted EUA time series alongside the actual values for both
nowcasting (left) and forecasting (right). The key finding is
that the model based on the three most informative variables
consistently delivers more reliable and robust predictions
compared to the model using all variables. This result sup-
ports the trend observed in figure 9, which shows that adding
more variables does not enhance performance and often intro-
duces noise that degrades predictive accuracy. In summary,
focusing on the most informative variables results in superior
prediction performance for both nowcasting and forecasting,
while including additional or random variables tends to reduce
accuracy. The same effect is summarised in table 3, which
reports the mean squared error (MSE) computed on the cross-
validation sets along with their level of uncertainty. In Hartvig
et al. (2023), the EU Climate Change News Index (ECCNI)
is evaluated for forecasting EU ETS carbon prices using three
models: TF-IDF, Baseline, and Full. The Full model shows
superior performance, consistently achieving lower RMSE
and MAE values compared to TF-IDF and Baseline. For
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Table 3. Prediction performance. Mean squared
error for nowcasting (δt = 0) and forecasting
(δt = 1) GP models built using all predictors (All),
a set of 3 random predictors (Rand.) and the set of
3 variables selected via the iterative greedy opti-
misation of the Information Imbalance (Inf. Imb.).
The GP model built on the 3 variables selected via

Information Imbalance performs best.

Mean Squared Error

δt = 0 δt = 1

Inf. Imb. 0.8 ± 0.3·10−3 0.1 ± 0.11·10−3

All 1.1 ± 0.6·10−3 0.6 ± 0.4·10−3

Rand. 79.5 ± 21.2·10−3 34.8 ± 6.8·10−3

example, the Full model outperforms the others in both 50-day
and longer test windows. Additionally, our non-parametric
methodology demonstrates exceptional prediction capabili-
ties, as detailed in table 3, with notably MSE values lower, by
several orders of magnitude, than the ones reported in Hartvig
et al. (2023). Comparing the prediction performance between
nowcasting (σ t = 0) and forecasting (σ t = 1) using the same
model reveals significant differences. For the Inf. Imb. model,
the MSE for nowcasting is 0.8 ± 0.3·10−3, while for forecast-
ing, it drops dramatically to 0.1 ± 0.11·10−3. This substantial
reduction in MSE indicates that the Inf. Imb. model performs
notably better in forecasting compared to nowcasting. In con-
trast, the All predictors model shows a MSE of 1.1 ± 0.6·10−3

for nowcasting and 0.6 ± 0.4·10−3 for forecasting. Although
the All predictors model also performs better in forecasting,
the improvement is less pronounced. The Random predictors
model, however, shows a much higher MSE in both nowcast-
ing 79.5 ± 21.2·10−3 and forecasting 34.8 ± 6.8·10−3, with
less improvement observed between nowcasting and forecast-
ing. Overall, the comparison underscores that, while both the
Inf. Imb. and All predictors models achieve better forecasting
performance than nowcasting, the former exhibits a particu-
larly marked improvement, highlighting its effectiveness in
longer-term predictions.

6. Conclusions

Our study focuses on identifying exogenous drivers that influ-
ence the price of the EU ETS market and on providing an
innovative methodology for mixed-frequency nowcasting and
forecasting, all using a completely non-parametric approach.
We have considered 33 exogenous variables categorised into
the following groups: 6 uncertainty-related variables, 8 com-
modities, 4 exchange rates, 6 energy indexes, 5 country-
specific indexes, and 4 macroeconomic variables. This data
set encompasses a total of 2374 observations from January
2014 to April 2023. Unlike conventional parametric econo-
metric models, the Information Imbalance does not depend
on any assumption on the model behind the time series and
their relationships. Instead, it allows working with variables
in their original form, ensuring results remain unaltered. This
unquestionably stands out as a key advantage of the non-
parametric approach employed, offering a greater degree of
flexibility compared to other parametric analyses. For each of

the last two EUA phases considered (Phase 3 and 4), we use
the Information Imbalance to identify the most informative
variables. We found that the most informative variables differ
significantly between the two phases analysed. ERIX index,
EUROSTOXX Electricity index, 3-month Bond yield were
the top 3 most informative variables for Phase 3. For Phase
4, the most informative variables include Uncertainty on
EUR/CHF exchange rate, Coal prices, and EUR/USD Spot
rate. Consequently, we can conclude that during Phase 3, the
most informative variables have a more fundamental nature,
such as energy indices, commodities, and macroeconomic
variables, while in Phase 4, financially oriented variables
provide much informative content. This difference may be
attributed to the impact of the COVID-19 pandemic and the
energy crisis affecting the EUA price more significantly in
Phase 4. These results were further supported by an itera-
tive greedy selection of informative variables. In addition to
empirical results, this article proposes a new methodology
derived from the use of the Information Imbalance. Specifi-
cally, we have chosen to include Euro-area GDP and Inflation
variables in our analysis at quarterly and monthly frequencies,
respectively, with the intention of capturing longer-term eco-
nomic cycle movements compared to variables observed in
empirical findings. We utilised Gaussian processes to aggre-
gate or impute the variables to ensure that they share the
same temporal frequency. The informativeness of exogenous
variables relative to the EUA target variable was measured
via the Information Imbalance for each considered temporal
scale, revealing the weekly scale as the most informative one.
The high information content of the weekly dataset confirmed
our choice to include longer-term macroeconomic variables,
as in both the nowcasting framework (δt = 0) and the fore-
casting framework (δt = 1), the high informativeness of GDP
and Inflation variables was evident. Our non-parametric anal-
ysis concludes with results obtained for nowcasting and
forecasting predictions, once again achieved using Gaussian
Processes. Predictions using all variables in our dataset and
only the top 3 most informative variables were presented.
As a benchmark, we also made predictions based on a ran-
dom selection of variables. The results demonstrate that using
only variables with high information content improves predic-
tion performance, both for nowcasting as well as forecasting.
Finally, the comparison between nowcasting and forecasting
performance highlights that the Information Imbalance (Inf.
Imb.) model significantly improves forecasting accuracy com-
pared to nowcasting. This model shows a marked reduction in
Mean Squared Error (MSE) for forecasting, demonstrating its
effectiveness for longer-term predictions. The All predictors
model also performs better in forecasting than nowcasting,
though the improvement is less pronounced. The Random pre-
dictors model consistently under-performs in both scenarios,
underscoring the superior accuracy of the other models.
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